Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity.

Identifieur interne : 001B41 ( Main/Exploration ); précédent : 001B40; suivant : 001B42

Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity.

Auteurs : R. Cafferkey [États-Unis] ; P R Young ; M M Mclaughlin ; D J Bergsma ; Y. Koltin ; G M Sathe ; L. Faucette ; W K Eng ; R K Johnson ; G P Livi

Source :

RBID : pubmed:8413204

Descripteurs français

English descriptors

Abstract

Rapamycin is a macrolide antifungal agent that exhibits potent immunosuppressive properties. In Saccharomyces cerevisiae, rapamycin sensitivity is mediated by a specific cytoplasmic receptor which is a homolog of human FKBP12 (hFKBP12). Deletion of the gene for yeast FKBP12 (RBP1) results in recessive drug resistance, and expression of hFKBP12 restores rapamycin sensitivity. These data support the idea that FKBP12 and rapamycin form a toxic complex that corrupts the function of other cellular proteins. To identify such proteins, we isolated dominant rapamycin-resistant mutants both in wild-type haploid and diploid cells and in haploid rbp1::URA3 cells engineered to express hFKBP12. Genetic analysis indicated that the dominant mutations are nonallelic to mutations in RBP1 and define two genes, designated DRR1 and DRR2 (for dominant rapamycin resistance). Mutant copies of DRR1 and DRR2 were cloned from genomic YCp50 libraries by their ability to confer drug resistance in wild-type cells. DNA sequence analysis of a mutant drr1 allele revealed a long open reading frame predicting a novel 2470-amino-acid protein with several motifs suggesting an involvement in intracellular signal transduction, including a leucine zipper near the N terminus, two putative DNA-binding sequences, and a domain that exhibits significant sequence similarity to the 110-kDa catalytic subunit of both yeast (VPS34) and bovine phosphatidylinositol 3-kinases. Genomic disruption of DRR1 in a mutant haploid strain restored drug sensitivity and demonstrated that the gene encodes a nonessential function. DNA sequence comparison of seven independent drr1dom alleles identified single base pair substitutions in the same codon within the phosphatidylinositol 3-kinase domain, resulting in a change of Ser-1972 to Arg or Asn. We conclude either that DRR1 (alone or in combination with DRR2) acts as a target of FKBP12-rapamycin complexes or that a missense mutation in DRR1 allows it to compensate for the function of the normal drug target.

DOI: 10.1128/mcb.13.10.6012
PubMed: 8413204
PubMed Central: PMC364661


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity.</title>
<author>
<name sortKey="Cafferkey, R" sort="Cafferkey, R" uniqKey="Cafferkey R" first="R" last="Cafferkey">R. Cafferkey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Gene Expression Sciences, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Gene Expression Sciences, SmithKline Beecham Pharmaceuticals, King of Prussia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Young, P R" sort="Young, P R" uniqKey="Young P" first="P R" last="Young">P R Young</name>
</author>
<author>
<name sortKey="Mclaughlin, M M" sort="Mclaughlin, M M" uniqKey="Mclaughlin M" first="M M" last="Mclaughlin">M M Mclaughlin</name>
</author>
<author>
<name sortKey="Bergsma, D J" sort="Bergsma, D J" uniqKey="Bergsma D" first="D J" last="Bergsma">D J Bergsma</name>
</author>
<author>
<name sortKey="Koltin, Y" sort="Koltin, Y" uniqKey="Koltin Y" first="Y" last="Koltin">Y. Koltin</name>
</author>
<author>
<name sortKey="Sathe, G M" sort="Sathe, G M" uniqKey="Sathe G" first="G M" last="Sathe">G M Sathe</name>
</author>
<author>
<name sortKey="Faucette, L" sort="Faucette, L" uniqKey="Faucette L" first="L" last="Faucette">L. Faucette</name>
</author>
<author>
<name sortKey="Eng, W K" sort="Eng, W K" uniqKey="Eng W" first="W K" last="Eng">W K Eng</name>
</author>
<author>
<name sortKey="Johnson, R K" sort="Johnson, R K" uniqKey="Johnson R" first="R K" last="Johnson">R K Johnson</name>
</author>
<author>
<name sortKey="Livi, G P" sort="Livi, G P" uniqKey="Livi G" first="G P" last="Livi">G P Livi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1993">1993</date>
<idno type="RBID">pubmed:8413204</idno>
<idno type="pmid">8413204</idno>
<idno type="pmc">PMC364661</idno>
<idno type="doi">10.1128/mcb.13.10.6012</idno>
<idno type="wicri:Area/Main/Corpus">001B34</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B34</idno>
<idno type="wicri:Area/Main/Curation">001B34</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001B34</idno>
<idno type="wicri:Area/Main/Exploration">001B34</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity.</title>
<author>
<name sortKey="Cafferkey, R" sort="Cafferkey, R" uniqKey="Cafferkey R" first="R" last="Cafferkey">R. Cafferkey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Gene Expression Sciences, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Gene Expression Sciences, SmithKline Beecham Pharmaceuticals, King of Prussia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Young, P R" sort="Young, P R" uniqKey="Young P" first="P R" last="Young">P R Young</name>
</author>
<author>
<name sortKey="Mclaughlin, M M" sort="Mclaughlin, M M" uniqKey="Mclaughlin M" first="M M" last="Mclaughlin">M M Mclaughlin</name>
</author>
<author>
<name sortKey="Bergsma, D J" sort="Bergsma, D J" uniqKey="Bergsma D" first="D J" last="Bergsma">D J Bergsma</name>
</author>
<author>
<name sortKey="Koltin, Y" sort="Koltin, Y" uniqKey="Koltin Y" first="Y" last="Koltin">Y. Koltin</name>
</author>
<author>
<name sortKey="Sathe, G M" sort="Sathe, G M" uniqKey="Sathe G" first="G M" last="Sathe">G M Sathe</name>
</author>
<author>
<name sortKey="Faucette, L" sort="Faucette, L" uniqKey="Faucette L" first="L" last="Faucette">L. Faucette</name>
</author>
<author>
<name sortKey="Eng, W K" sort="Eng, W K" uniqKey="Eng W" first="W K" last="Eng">W K Eng</name>
</author>
<author>
<name sortKey="Johnson, R K" sort="Johnson, R K" uniqKey="Johnson R" first="R K" last="Johnson">R K Johnson</name>
</author>
<author>
<name sortKey="Livi, G P" sort="Livi, G P" uniqKey="Livi G" first="G P" last="Livi">G P Livi</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="ISSN">0270-7306</idno>
<imprint>
<date when="1993" type="published">1993</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Antifungal Agents (pharmacology)</term>
<term>Base Sequence (MeSH)</term>
<term>Blotting, Southern (MeSH)</term>
<term>Carrier Proteins (metabolism)</term>
<term>DNA, Fungal (MeSH)</term>
<term>Drug Resistance, Microbial (genetics)</term>
<term>Fungal Proteins (genetics)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Heat-Shock Proteins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphatidylinositol 3-Kinases (MeSH)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (genetics)</term>
<term>Polyenes (pharmacology)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
<term>Restriction Mapping (MeSH)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sirolimus (MeSH)</term>
<term>Tacrolimus Binding Proteins (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN fongique (MeSH)</term>
<term>Allèles (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Antifongiques (pharmacologie)</term>
<term>Cartographie de restriction (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Gènes fongiques (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphatidylinositol 3-kinases (MeSH)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (génétique)</term>
<term>Polyènes (pharmacologie)</term>
<term>Protéines de Saccharomyces cerevisiae (MeSH)</term>
<term>Protéines de liaison au tacrolimus (MeSH)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Protéines du choc thermique (métabolisme)</term>
<term>Protéines fongiques (génétique)</term>
<term>Réaction de polymérisation en chaîne (MeSH)</term>
<term>Résistance microbienne aux médicaments (génétique)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Sirolimus (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Technique de Southern (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carrier Proteins</term>
<term>Heat-Shock Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Polyenes</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Drug Resistance, Microbial</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protéines fongiques</term>
<term>Résistance microbienne aux médicaments</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines de transport</term>
<term>Protéines du choc thermique</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antifongiques</term>
<term>Polyènes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Blotting, Southern</term>
<term>DNA, Fungal</term>
<term>Genes, Fungal</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Polymerase Chain Reaction</term>
<term>Restriction Mapping</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sequence Homology, Amino Acid</term>
<term>Signal Transduction</term>
<term>Sirolimus</term>
<term>Tacrolimus Binding Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN fongique</term>
<term>Allèles</term>
<term>Animaux</term>
<term>Cartographie de restriction</term>
<term>Données de séquences moléculaires</term>
<term>Gènes fongiques</term>
<term>Humains</term>
<term>Mutation</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison au tacrolimus</term>
<term>Réaction de polymérisation en chaîne</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Sirolimus</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Technique de Southern</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rapamycin is a macrolide antifungal agent that exhibits potent immunosuppressive properties. In Saccharomyces cerevisiae, rapamycin sensitivity is mediated by a specific cytoplasmic receptor which is a homolog of human FKBP12 (hFKBP12). Deletion of the gene for yeast FKBP12 (RBP1) results in recessive drug resistance, and expression of hFKBP12 restores rapamycin sensitivity. These data support the idea that FKBP12 and rapamycin form a toxic complex that corrupts the function of other cellular proteins. To identify such proteins, we isolated dominant rapamycin-resistant mutants both in wild-type haploid and diploid cells and in haploid rbp1::URA3 cells engineered to express hFKBP12. Genetic analysis indicated that the dominant mutations are nonallelic to mutations in RBP1 and define two genes, designated DRR1 and DRR2 (for dominant rapamycin resistance). Mutant copies of DRR1 and DRR2 were cloned from genomic YCp50 libraries by their ability to confer drug resistance in wild-type cells. DNA sequence analysis of a mutant drr1 allele revealed a long open reading frame predicting a novel 2470-amino-acid protein with several motifs suggesting an involvement in intracellular signal transduction, including a leucine zipper near the N terminus, two putative DNA-binding sequences, and a domain that exhibits significant sequence similarity to the 110-kDa catalytic subunit of both yeast (VPS34) and bovine phosphatidylinositol 3-kinases. Genomic disruption of DRR1 in a mutant haploid strain restored drug sensitivity and demonstrated that the gene encodes a nonessential function. DNA sequence comparison of seven independent drr1dom alleles identified single base pair substitutions in the same codon within the phosphatidylinositol 3-kinase domain, resulting in a change of Ser-1972 to Arg or Asn. We conclude either that DRR1 (alone or in combination with DRR2) acts as a target of FKBP12-rapamycin complexes or that a missense mutation in DRR1 allows it to compensate for the function of the normal drug target.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">8413204</PMID>
<DateCompleted>
<Year>1993</Year>
<Month>10</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0270-7306</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>13</Volume>
<Issue>10</Issue>
<PubDate>
<Year>1993</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity.</ArticleTitle>
<Pagination>
<MedlinePgn>6012-23</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Rapamycin is a macrolide antifungal agent that exhibits potent immunosuppressive properties. In Saccharomyces cerevisiae, rapamycin sensitivity is mediated by a specific cytoplasmic receptor which is a homolog of human FKBP12 (hFKBP12). Deletion of the gene for yeast FKBP12 (RBP1) results in recessive drug resistance, and expression of hFKBP12 restores rapamycin sensitivity. These data support the idea that FKBP12 and rapamycin form a toxic complex that corrupts the function of other cellular proteins. To identify such proteins, we isolated dominant rapamycin-resistant mutants both in wild-type haploid and diploid cells and in haploid rbp1::URA3 cells engineered to express hFKBP12. Genetic analysis indicated that the dominant mutations are nonallelic to mutations in RBP1 and define two genes, designated DRR1 and DRR2 (for dominant rapamycin resistance). Mutant copies of DRR1 and DRR2 were cloned from genomic YCp50 libraries by their ability to confer drug resistance in wild-type cells. DNA sequence analysis of a mutant drr1 allele revealed a long open reading frame predicting a novel 2470-amino-acid protein with several motifs suggesting an involvement in intracellular signal transduction, including a leucine zipper near the N terminus, two putative DNA-binding sequences, and a domain that exhibits significant sequence similarity to the 110-kDa catalytic subunit of both yeast (VPS34) and bovine phosphatidylinositol 3-kinases. Genomic disruption of DRR1 in a mutant haploid strain restored drug sensitivity and demonstrated that the gene encodes a nonessential function. DNA sequence comparison of seven independent drr1dom alleles identified single base pair substitutions in the same codon within the phosphatidylinositol 3-kinase domain, resulting in a change of Ser-1972 to Arg or Asn. We conclude either that DRR1 (alone or in combination with DRR2) acts as a target of FKBP12-rapamycin complexes or that a missense mutation in DRR1 allows it to compensate for the function of the normal drug target.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cafferkey</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Gene Expression Sciences, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Young</LastName>
<ForeName>P R</ForeName>
<Initials>PR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McLaughlin</LastName>
<ForeName>M M</ForeName>
<Initials>MM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bergsma</LastName>
<ForeName>D J</ForeName>
<Initials>DJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Koltin</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sathe</LastName>
<ForeName>G M</ForeName>
<Initials>GM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Faucette</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Eng</LastName>
<ForeName>W K</ForeName>
<Initials>WK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>R K</ForeName>
<Initials>RK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Livi</LastName>
<ForeName>G P</ForeName>
<Initials>GP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>L19540</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006360">Heat-Shock Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011090">Polyenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C083324">TOR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.2.1.-</RegistryNumber>
<NameOfSubstance UI="D022021">Tacrolimus Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<GeneSymbolList>
<GeneSymbol>DRR1</GeneSymbol>
<GeneSymbol>RBP1</GeneSymbol>
</GeneSymbolList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015139" MajorTopicYN="N">Blotting, Southern</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004352" MajorTopicYN="N">Drug Resistance, Microbial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006360" MajorTopicYN="N">Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="Y">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011090" MajorTopicYN="N">Polyenes</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015183" MajorTopicYN="N">Restriction Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="Y">Saccharomyces cerevisiae Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022021" MajorTopicYN="N">Tacrolimus Binding Proteins</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1993</Year>
<Month>10</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1993</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1993</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">8413204</ArticleId>
<ArticleId IdType="pmc">PMC364661</ArticleId>
<ArticleId IdType="doi">10.1128/mcb.13.10.6012</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1991 Sep 11;19(17):4775</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1653951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1991 Dec 1;108(1):73-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1761234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1992 Feb 1;111(1):85-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1547957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Today. 1992 Apr;13(4):136-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1374612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jun 25;357(6380):692-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1377361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jun 25;357(6380):695-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1377362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jul 2;358(6381):70-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1614535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Jun 26;69(7):1227-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1377606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Jul 5;267(19):13115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1618811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Aug 7;70(3):365-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1379518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Aug 7;70(3):419-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1322797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7471-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1380159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7571-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1380162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1991 Dec;7(9):971-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1803821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1992 Apr 1;113(1):125-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1563628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Apr 17;256(5055):382-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1566087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Biol. 1991;7:227-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1809348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Nov 25;267(33):24117-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1331109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1992 Aug;8(8):673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1279908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11169-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1454795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Feb 15;268(5):3734-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8429048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Apr 2;260(5104):88-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8385367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 May 7;73(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1993 Jul 30;129(2):159-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8325502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4504350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1977 Oct 18;16(21):4743-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">911786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">271968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Aug 14;257(5072):973-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1380182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1992 Sep;11(9):3469-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1380456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Aug 25;267(24):17472-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1380963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1992 Mar;17(3):114-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1412695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1978 Sep 14;275(5676):104-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">357984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1982 Jan;28(1):145-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7039847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1983 Jan;153(1):163-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6336730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1983;101:202-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6310324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6546423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1987;155:335-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3431465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3162770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Jul 1;241(4861):42-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3291115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1988 Aug 25;16(16):8186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3047679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Oct 27;335(6193):835-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3185713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1989 Jul 15;143(2):718-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2472451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Oct 26;341(6244):755-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2477714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Oct 26;341(6244):758-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2477715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Oct 25;264(30):17809-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2553693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1989 Nov 15;83(1):39-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2687115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1989 Dec 22;246(4937):1617-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2595372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1990 Feb 15;144(4):1418-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1689353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 Jan 11;18(1):190</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2137907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 Mar 25;18(6):1643</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2183199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1990 Jun;10(6):2678-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2160582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Aug 16;346(6285):671-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1696686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 Aug 25;18(16):4917</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2204030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1990 Oct;10(10):5226-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2204808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Oct 26;250(4980):556-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1700475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Nov 9;250(4982):786-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2173140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Nov 9;250(4982):805-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2237430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1990 Dec;10(12):6742-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2247081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1990 Dec;9(13):4425-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1702384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1990 Dec 15;96(2):189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2269432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Jan 18;251(4991):283-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1702904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Jan 25;64(2):281-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1846320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):1029-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1704127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Mar;11(3):1553-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1705008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Mar;11(3):1718-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1996117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1948-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1705713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Jul 25;266(21):13859-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1649831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Aug 25;266(24):15555-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1651913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Aug 23;66(4):743-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1652372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Aug 23;66(4):799-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1652374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Aug 23;66(4):807-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Aug 29;352(6338):803-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715516</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bergsma, D J" sort="Bergsma, D J" uniqKey="Bergsma D" first="D J" last="Bergsma">D J Bergsma</name>
<name sortKey="Eng, W K" sort="Eng, W K" uniqKey="Eng W" first="W K" last="Eng">W K Eng</name>
<name sortKey="Faucette, L" sort="Faucette, L" uniqKey="Faucette L" first="L" last="Faucette">L. Faucette</name>
<name sortKey="Johnson, R K" sort="Johnson, R K" uniqKey="Johnson R" first="R K" last="Johnson">R K Johnson</name>
<name sortKey="Koltin, Y" sort="Koltin, Y" uniqKey="Koltin Y" first="Y" last="Koltin">Y. Koltin</name>
<name sortKey="Livi, G P" sort="Livi, G P" uniqKey="Livi G" first="G P" last="Livi">G P Livi</name>
<name sortKey="Mclaughlin, M M" sort="Mclaughlin, M M" uniqKey="Mclaughlin M" first="M M" last="Mclaughlin">M M Mclaughlin</name>
<name sortKey="Sathe, G M" sort="Sathe, G M" uniqKey="Sathe G" first="G M" last="Sathe">G M Sathe</name>
<name sortKey="Young, P R" sort="Young, P R" uniqKey="Young P" first="P R" last="Young">P R Young</name>
</noCountry>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Cafferkey, R" sort="Cafferkey, R" uniqKey="Cafferkey R" first="R" last="Cafferkey">R. Cafferkey</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B41 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001B41 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:8413204
   |texte=   Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:8413204" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020